399 research outputs found

    Securing Communication in the IoT-based Health Care Systems

    Get PDF
    Rapid development of Internet of Things (IoT) and its whole ecosystems are opening a lot of opportunities that can improve humans' quality of life in many aspects. One of the promising area where IoT can enhance our life is in the health care sector. However, security and privacy becomes the main concern in the electronic Health (eHealth) systems and it becomes more challenging with the integration of IoT. Furthermore, most of the IoT-based health care system architecture is designed to be cross-organizational due to many different stakeholders in its overall ecosystems – thus increasing the security complexity. There are several aspects of security in the IoT-based health care system, among them are key management, authentication and encryption/decryption to ensure secure communication and access to health sensing information. This paper introduces a key management method that includes mutual authentication and secret key agreement to establish secure communication between any IoT health device with any entity from different organization or domain through Identity-Based Cryptography (IBC)

    Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    Get PDF
    AbstractThe energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network is the introduction of heterogeneous nodes regarding energy, and the other is to synchronize the local clock of the node with the global clock of the network. In this context, the paper proposes Node Heterogeneity aware Energy Efficient Synchronization Algorithm (NHES). It works on the formation of cluster-based spanning tree (SPT). In the initial stage of the algorithm, the nodes are grouped into the cluster and form the tree. The nodes in the cluster and cluster heads in the network are synchronized with the notion of the global time scale of the network. Also, clock skews may cause the errors and be one of the sources of delay and energy consumption. To minimize the energy consumptions and delay, NHES synchronizes the time slots using TDMA based MAC protocol. The results show that level by level synchronization used in NHES is energy efficient and has less delay as compared to the state-of-the-art solutions

    NOVEL CONTEXT-AWARE CLUSTERING WITH HIERARCHICAL ADDRESSING (CCHA) FOR THE INTERNET OF THINGS (IoT)

    Get PDF

    Novel Framework for Data Collection in Wireless Sensor Networks Using Flying Sensors

    Get PDF

    Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    Get PDF

    Cost Benefit Analysis of Utilising Mobile Nodes in Wireless Sensor Networks

    Get PDF

    Wildlife conservation and rail track monitoring using wireless sensor networks

    Get PDF

    Identity driven Capability based Access Control (ICAC) Scheme for the Internet of Things

    Get PDF
    • …
    corecore